Oferta na rok a k a d e m i c k i 2 0 1 3 / 2 0 1 4 - Wyklad ogolnouniwersytecki - informacja
Wydzial oferujacy wyklad:
Wydzial Fizyki, Astronomii i Informatyki Stosowanej
Nazwa przedmiotu:
Rozmiar Wszechświata
Erasmus/Socrates code
Erasmus Code 13.7 Astronomy and Astrophysics
Skrócony opis
Formal and intuitive introduction to the comoving spatial section of the Universe according to the Friedmann-Lemaitre-Robertson-Walker model, i.e. as a constant curvature 3-manifold, the various possible definitions of the "size" of the Universe according to model, and present observational estimates of these.
"Nalezy wpisac informacje o zasadach przyporzadkowania punktow ECTS. Nalezy pamietac, ze1 punkt ECTS odpowiada 25-30 godzinom pracy studenta potrzebnej do osiagniecia zakladanych efektow uczenia sie. Suma punktow ECTS wynika z kalkulacji nakladu pracy studenta obejmujacej w szczegolnosci godziny kontaktowe (wyklady) oraz przygotowanie do zajec i do zaliczenia/egzaminu."
required: elementary algebra; calculus; three-dimensional Euclidean geometry; Newtonian physics; recommended: basic astronomy; spherical astronomy; extragalactic observational astronomy; differential geometry; special and general relativity
Skrócony opis przedmiotu
The shape of the Universe according to general relativity applied to astronomical observations.
Pełny opis przedmiotu
przestrzeń jako 3-rozmaitości: krzywizna + topologia (space as a 3-manifold: curvature + topology)
krzywizna i metryka, rola równań Einsteina-Hilberta w kosmologii wielkiego wybuchu ciepłego (curvature and the metric, the role of the Einstein-Hilbert equations in hot big bang cosmology)
wielospójne 3-rozmaitości, domen fundamentalny, przestrzeń widoczna (multiply connected 3-manifold, fundamental domain, apparent space)
różne definicji odległość w modelach FLRW (various definitions of distance in FLRW models)
różne definicji rozmiar przestrzeni współporuszające się, różnica między promieńiem krzywiznego a rozmiar rozmaitości (various definitions of the size of comoving space, difference between curvature radius and manifold size)
knowledge: geometrical, topological, physical, algebraic and numerical familiarity with the present state of empirical knowledge about the whole of the observable Universe and common definitions of the size of the Universe
knowledge: awareness of the role of open access to scientific empirical data and theoretical tools and FLOSS software for scientific analysis in modern scientific research (FLOSS: free/libre/open source software)
skills: the ability to make elementary geometrical calculations for the main cosmological distance definitions (4 points in exam)
social skills: experience in subjecting one's learning to potentially intensive peer review (1 point in exam)
Sposób zaliczenia:
The exam consists of four points from html/latex/WIMS exercises which test the student using questions randomly chosen from an N-dimensional parameter space of questions where N varies from about 8 to 18, and one creative point offering the student the chance to subject his/her learning to potentially intensive peer review.
Metody i kryteria oceniania:
In the main part of the exam, the student needs to correctly answer open format questions which are each chosen uniquely for that individual student. Partial credit is given for partially correct answers. Students who wish to try to answer the questions again are given newly chosen, unique questions, for as long as they wish to keep trying. Numerical answers are required to be correct to a reasonable precision, depending on the particular question family. The creative point is open to peer review by the lecturer, by other students and by other members of the research institute.