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@ linear perturbations in (A)LTB models

@ light propagation perturbed ALTB models
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Provide more observables to
@ constrain ALTB models as best as possible

@ confirm and strengthen findings on spherical voids on a broad
scientific basis
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aﬁ(t,r)
1 — k(r)r?

assumptions

@ homogeneous Big Bang t5(r) = 0, fixes global to[h, Qp,, Q]

ds? = —dt* + dr? 4+ r2d? (t,r)dQ?

o radial gauge: a, (to,7) = 1, fixes M (r) using p(to,)

plto,7)

asymptotic model parameters
FLRW model

density profile:

ap, az, asg, L
asymptotic FLRW:
h, Qp, Qp
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242 split: M* = M? x §?
expansion into spherical harmonics Y ) (6, ¢) and cov. derivatives

(Clarkson et al. (2010), Gundlach & Martin-Garcia (2000), Gerlach &
Sengupta (1978))
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metric perturbations - Clarkson et al. (2010)

Abstract set of metric perturbations: {X(Zm), ptm) (tm) n(zm)}
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n=20

Similar for matter perturbations {A(Zm),w“m),v(zm)}

Dynamical coupling of gauge invariants ! J
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main differences compared to FLRW:

@ dynamical coupling

@ ALTB gauge invariants # FLRW gauge invariants

Nurmariezl seluiiern extract observables

@ initial scalar potential
Pr(k) = wlm) = _,(tm) /9 T

"~ -- deformed screen

@ discretization:

o o] oo kp=dt
fiducial ray da

1d finite elements in space
method of lines

= do
i dor

(o) - :
screen
d?D,,
@ estimate coupling strength d)\; = Tac[n, ¥, 6, X] Deb
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Numerical Solution - Overview

background model
e p(to,r): L, a1, ag, ... |:> evolve backwards to initial
o asymptotic FLRW time/redshift (zin; ~ 100) J
model: h, Q,,, Qa

4

@ Evolve linear PDEs for

each (¢, m)-mode forward @ initial perturbations
in time P (FLRW limit)
o e M), @) o ) = 2wt

m=—{
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models from Redlich et al. (2014):

@ best fit ALTB (bfALTB): local Hy, SNae, CMB, kSZ
@ best fit LTB (bfLTB): local Hy, SNae, asymptotically EdS
o reference ACDM (refACDM)

model h Qm Qa al as as

bfALTB 0.73 0.245 0.745 1.02 1.02 0.96
bfLTB 0.557 1.0 0.0 023 0.44 0.59
refFACDM | 0.73 0245 0745 1.0 10 1.0
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coupling strength
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d?Dgy

dA?

Jacobi equation: = Tac[n, ¥,<, X Dev

assumptions:

@ central observer in the background ALTB spacetime

@ Born’s approximation: influences of perturbations integrated along
the unperturbed lightpath k*

Doy = (ra1)Mvas + DG (N 0,0),  Tap =T33 (N + T3 (A, 0,0)
Spherical harmonic decomposition:
d2DX(Zm)

d\2
X = trace, trace-free

= —4nGp(1 + 2)2 DX L TXE [ o ¢ ) ray

11/15



light propagation perturbed ALTB models

A
DX(ém)()\) _ / N G()\, )\/) TX(ém)[Xﬂ Q,Q}UK)\/) raL()\l)a X = T TF
0

Greens function:

A d\’

G0N =rasras) [ oy

Weak lensing observables:

() = DTED () frar(A), A (A) = DTTED(A) frar (A)
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ALTB: coupling small (™) (¢, 7) = Dg,(t,r)gol(ﬁ:n)( ) J

A N 2
Chgbwbnm = [ @0 (ra)@) [ s Gane) [

A /
// (raf)yg(y/) <FX(/m)( )FZ (£'m )( ) >

with X,Z =rk,vand X,Z =T, TF.

Separable time evolution using field equations:
(EXEFZEmIN)T) = 37 L NLE V) (el (r(0)ef (r (X))
pq

where p,q = 0,1,2 and ¢®) = 9P
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Conclusion

@ dynamical coupling is negligible for relevant ALTB models

@ Observables: ALTB weak lensing analogous to FLRW in case
of central observer

@ K, 7 as line of sight integrals over gauge invariant
perturbations

work in progress/future

@ theoretical powerspectra for negligible/small couplings
@ extend to ISW effect

@ comparison to observationally inferred spectra

o full MCMC analysis for ALTB models including consistent
linear perturbation theory
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