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Outline

= The model and its properties
= Averaging with weak limit

= Construction of the background



Motivation

Being inspired by the perturbation theory, the aim is to construct a disturbed
version of the Friedmann—Lemaitre cosmological model by simple generalization of
its metric.

We are interested in a model with the following properties

= metric is lorentzian

= energy density is positive

= growing inhomogeneities are allowed
= inhomogeneities are finite

What can and what can not be achieved by performing such a construction?

Is a model, even unphysical, with such properties possible? If it exists, what are its
limitations?

Explicit models can be used for testing different averaging strategies.



The model

= The metric, the matter four-velocity and the Einstein equations are
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= Spacetime of the model is lorentzian, inhomogeneous and does not satisfy the weak
energy condition.



The model

= Energy density in the model is non-negative, infinite in zero and finite in infinity
when
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The model

Isodensity surfaces
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The model

There are nine parameters in the model, «, 3, v, 6, €, f, », w, A.

Parameters ¢, w are irrelevant due to scaling symmetry in the model. Physical
quantities (e.g. age) are invariant under the transformation
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The parameter \ scales spatial coordinates. The distance between overdensities is
AT

The parameter ¢ controls the growth rate of inhomogeneities. They grow when it is
positive.



The model

The inhomogeneities are convex when « is positive. This parameter controls also
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the density contrast, — 1. It grows from 0 at zero time to %(2 + %) at

infinity and is finite.

The parameter 3 controls the width of the inhomogeneities. Theirs width at half
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The matter in the model evolves in time. There is a limited control over its
behavior. The adiabatic index of the cosmic fluid, ‘f + 1, changes from ~ to f. The

quotient % decides on the character of the phase transition (smooth or violent).

The shear viscosity coefficient, the ratio of 7+, to —20c*,, changes from
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negative at zero time.

— 2). For reasonable values of parameters, it is

It is possible to match the basic property of the Universe that at the Hubble
constant near 70 km/Mpc/s its age is about 13 Gyr.



Averaging of the model

= We average the model by averaging individual fields in it. We use the weak limit as
a tool (Burnett (1989), Green and Wald (2011))
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= Here, it is needed the following
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Averaging of the model

The metric does not converge uniformly as A — 0. We need the weak limit to
average it. Due to this, the Green—Wald theorems do not apply here.

For averaged scalar quantities there occurs that
K(e) = 3(6%) — 30" 0pa) = §(0)*.
The averaging of tensor quantities reveals that
(opv) #0, but (o)) =0, () # 0, but (m#,) = 0.

The weak limit depends on the valence of the averaged tensor.

According to this, we should question that (g,,) can be taken as the proper
background metric.



The background model

= The Green—Wald approach

(Guv(g)) = Guv(B) — Ktuv.
Taking (gu) as the background metric is unjustified. When g and t,, are free
this equation could be satisfied by infinitely many ways.

= For our model, there is one distinguished solution which could serve as the
background model. It is given by the metric which reproduces the averaged mixed
energy-momentum tensor alone

(6"v(g)) = G"u(2)

We assume here that the weak limit acting on a tensor with mixed indices gives
reliable results.



The background model

It is equivalent to searching for a metric reproducing averaged energy density (e)
and pressure (p).

We assume that the background metric has the Robertson—Walker symmetry
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The equations are as follows
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Right hand side of the differential equation is a rational function of time so it can
be integrated explicitly.

It appears that the expansion scalar is also reproduced, (0(g)) = 0(g).



Outlook

= What are optical properties of the background model in comparison to the original
model?

= What criterion should be applied to select the background model properly?

= How such an unphysical model could resemble so well the true Universe?



