oef Inertie en analyse de données --- Introduction ---

Ce module regroupe pour l'instant 17 exercices sur l'inertie en analyse de données.

(Proj), plan d'inert. min: 3D, 5 pts don

Déterminer un plan passant par le barycentre des colonnes de par rapport auquel l'inertie des colonnes de est minimale avec les poids ( A.C.P.):

2 étapes

  1. calculer (précision 1/1000 (cf document!) pour les inerties) l'inertie par rapport à ce plan
  2. Parmi les dessins qui apparraissent ensuite, l'un d'eux représente la projection des colonnes de , la matrice des cosinus des anciens caractères avec les nouveaux: retrouvez le et cliquez sur ce bon dessin
avec:


et pour copier coller: A=[]
p=[]
q=[] ###rrho=[]###;;;;;;randchoix= #


baryc octave

calculer le barycentre des colonnes de avec les poids


Proj, inert./dte 2D huygh., I/dte orthog

calculer
  1. l'inertie des colonnes de b par rapport à la droite passant par a et // à V avec les poids p;
  2. puis inertie par rapport à dte // passant par barycentre;
  3. puis ;
  4. puis ; commentaires oraux!
N.B. Vous pouvez copier coller la version texte des matrices: ou []
(a=[]) (V=[]) (p=[]) {
 ####,,::::: #in=#Ptib= [];; 
Pgtib=[];;; pga=[]
in=;;ing=;;iga=;;; err1=,,err2=,, err=,,huyg=
}

Proj, inert./dte 2D huyghens( octave)

calculer
  1. l'inertie des colonnes de b par rapport à la droite passant par a et // à V avec les poids p;
  2. puis inertie par rapport à dte // passant par barycentre;
  3. puis ;
  4. puis ; commentaires oraux!
N.B. Vous pouvez copier coller la version texte des matrices: ou []
(a=[]) (V=[]) (p=[]) {
 ####,,::::: #in=#Ptib= [];; 
Pgtib=[];;; pga=[]
in=;;ing=;;iga=;;; err1=,,err2=,, err=,,huyg=
}

Proj, inert./dte 2D( octave)

calculer l'inertie des colonnes de b par rapport à la droite passant par a et // à V avec les poids p sizeb= {
 ####,,::::: #in=#Ptib= 
}

Proj, 3-6 pts inert./2dtes 2D

Calculer:
  1. Les projections des colonnes de b sur la droite passant par a et // à V
  2. l'inertie des colonnes de b par rapport à la droite passant par a et // à V avec les poids p
  3. l'inertie des colonnes de b par rapport à la droite passant par a et // à avec les poids p
  4. (précision 1/1000: absolue pour projection et valeur relative pour inertie ):

,  ,  ,  ,  ,
Faites un dessin; mesurez l'inertie à la règle; comparez avec le resultat numerique;
rédigez; rendez à votre enseignant

pour couper coller     b=[],  a=[],  V=[],  Vper=[],  p=[],
debug:, [], , []

Proj, inert./dte 3D 2 pts huygh.,

calculer
  1. l'inertie des colonnes de b par rapport à la droite passant par a et // à V avec les poids p;
  2. puis inertie par rapport à dte // passant par barycentre;
  3. puis ;
  4. puis ; commentaires oraux!
N.B. Vous pouvez copier coller la version texte des matrices: ou []
(a=[]) (V=[]) (p=[]) {
 ####,sizeb=,dim=,d=::::: #in=#Ptib= [];; 
Pgtib=[];;; pga=[]
in=;;ing=;;iga=;;; err1=,,err2=,, err=,,huyg=
}

Inert./plan 5_7D 8_10 pts huygh.,

calculer(précision relative 1/1000 (cf document!) pour les inerties)
  1. l'inertie des colonnes de b par rapport au plan passant par a et // à V avec les poids p;
  2. puis inertie par rapport au plan // passant par barycentre;
  3. puis ;
  4. puis ; commentaires oraux!
N.B. Vous pouvez copier coller la version texte des matrices:


pour copier/coller:
b= []
a=[], V=[], p=[]
debug:: ####,toto= , iterstop= , rangv= , sizeb=,dim=,d=::::: #in=#
Ptib= [];;
Pgtib=[];;; pga=[]
in=;;ing=;;iga=;;; err=,,huyg=

Proj./ dte aff. (vect. d.) et inertie 2D

Calculez
  1. la projection du point b (precision 1/1000) sur la droite affine passant par a et de vecteur directeur t
  2. l'inertie de b par rapport à cette droite (carré de la distance)
avec:

,   ,   ,
debug:toto=, rangabt=, [],
[], []

Faites un dessin; mesurez l'inertie à la règle; rédigez; rendez à votre enseignant

Proj, 2 pts inert./dte 2D

Calculer:
  1. Les projections des colonnes de b sur la droite passant par a et // à V
  2. l'inertie des colonnes de b par rapport à la droite passant par a et // à V avec les poids p
  3. (précision 1/1000: absolue pour projection et valeur relative pour inertie ):

,  ,  ,  ,
Faites un dessin; mesurez l'inertie à la règle; comparez avec le resultat numerique;
rédigez; rendez à votre enseignant
debug:, [], , []

Inert. 3 pts/plan 3D

Calculez (précision relative 1/1000)
  1. la première composante de la projection de la première colonne de b sur le plan affine passant par a et parallèle à V
  2. l'inertie des colonnes de b par rapport à avec:

   

copier/coller: b=[],
a=[], V=[]
debug: toto= , nb= G=[] G1=[] , Ptildebun=


Proj, 4-7 pts inert./dte 2D

Calculer:
  1. Les projections des colonnes de b sur la droite passant par a et // à V
  2. l'inertie des colonnes de b par rapport à la droite passant par a et // à V avec les poids p
  3. (précision 1/1000: absolue pour projection et valeur relative pour inertie ):

,  ,  ,  ,
Faites un dessin; mesurez l'inertie à la règle; comparez avec le resultat numerique;
rédigez; rendez à votre enseignant

pour couper coller     b=[],  a=[],  V=[],  p=[],
debug:, [], , []

Inert. 5..9 pts/plan 3D

Calculez (précision relative 1/1000)
  1. la composante de la projection de la colonne de b sur le plan affine passant par a et parallèle à V
  2. l'inertie des colonnes de b par rapport à avec:

Pour copier, coller: b=[],
a=[], V=[]
debug: toto= , nb= G=[] G1=[]
affi: , , Ptildebun=


Inert./plan 5_7D 8_10 pts huygh.,

calculer(précision relative 1/1000 (cf document!) pour les inerties)
  1. l'inertie des colonnes de b par rapport au plan passant par a et // à V avec les poids p;
  2. puis inertie par rapport au plan // passant par barycentre;
  3. puis ;
  4. puis ; commentaires oraux!
N.B. Vous pouvez copier coller la version texte des matrices:


pour copier/coller:
b= []
a=[], V=[], p=[]
debug:: ####,toto= , iterstop= , rangv= , sizeb=,dim=,d=::::: #in=#
Ptib= [];;
Pgtib=[];;; pga=[]
in=;;ing=;;iga=;;; err=,,huyg=

qcm_inertie1




val p. mat 3x3 classique (octave)

calculer les valeurs propres de avec:

{

###[]::::::!!!
}


val. p. mat 7x7 classique (octave)

calculer les valeurs propres de avec:

{

###(lamda=[]) ;;;!!!
}

The most recent version


Cette page n'est pas dans son apparence habituelle parce que WIMS n'a pas pu reconnaître votre navigateur de web.

Pour accéder aux services de WIMS, vous avez besoin d'un navigateur qui connait les formes. Afin de tester le navigateur que vous utilisez, veuillez taper le mot wims ici : puis appuyez sur ``Entrer''.

Veuillez noter que les pages WIMS sont générées interactivement; elles ne sont pas des fichiers HTML ordinaires. Elles doivent être utilisées interactivement EN LIGNE. Il est inutile pour vous de les ramasser par un programme robot.

Description: premiers exercices en vue de l'analyse en composantes principales. interactive exercises, online calculators and plotters, mathematical recreation and games

Keywords: interactive mathematics, interactive math, server side interactivity, Analyse de données, geometrie affine, matrices, ACP, QCM